Профессия Data Scientist
ПЕРВЫЙ ПЛАТЕЖ НА 2-ОЙ МЕСЯЦ- ★ 4,6 из 5
рейтинг курса на основе 14 267 оценок
- Помощь в трудоустройстве
возможность найти работу уже после 9 месяцев
- Авторы курса
эксперты из Сбера, Visa, Wildberries, ВТБ и EPAM
- -65%
Скидка действует
0 дня 00:00:00
О профессии
Работа с данными — процесс, в котором каждый участник команды выполняет свою задачу.
Аналитик помогает бизнесу принимать решения, а специалист по машинному обучению, или ML-инженер, создаёт нейросети, которые чего только не умеют — распознают тексты, фотографии или даже пишут стихи.
Независимо от роли все программируют на Python, разбираются в математике, статистике и говорят на языке данных. Поэтому иногда таких специалистов называют просто Data Scientist.
Кратко про обучение
- Постепенно погрузитесь в профессию
Изучите основы математики и статистики, а затем на продвинутом уровне изучите машинное обучение или анализ данных на выбор.
- Сможете работать во время обучения
Уже в середине курса ваших знаний и навыков будет достаточно, чтобы выйти на стажировку.
- Будете учиться на реальных задачах от компаний
Поработаете с данными «СберАвтоподписки» и «СберМаркета».
Как проходит обучение на платформе
- Собирать и обрабатывать данные
Научим выгружать данные из разных источников и очищать их от лишней информации.
- Анализировать и оценивать данные
Подробно и на понятных примерах объясним основы статистики, чтобы вы смогли быстро выявлять паттерны, тенденции и корреляции в данных.
- Программировать и прогнозировать
С нуля научим программировать модели машинного обучения на Python. С помощью таких моделей вы сможете предсказывать данные. Например, погоду или будущую прибыль компании.
- Визуализировать и презентовать данные
Вы узнаете, как создавать графики, диаграммы и дашборды, чтобы сделать данные понятными для других людей. А ещё мы научим вас презентовать результаты анализа заказчику.
Уровни курса
Что даёт профессия Data Scientist?
Преподаватели из топовых компаний доступно объяснят каждую тему
Итоговые проекты
Содержание курсов
- 12 месяцев обучения
- 8 реальных проектов в профессии
- Доступ навсегда
- Обновлена в 2024 году
- Первый уровень: базовая подготовка
-
Введение в Data Science Познакомитесь с основными направлениями data science, узнаете, какие задачи решают дата-аналитики, дата-инженеры и специалисты по машинному обучению.
- Введение в курс
- Business understanding. С чего начинается работа с данными
- Data understanding. Excel
- Введение в Python
- Переменные и типы данных
- Условия
- Циклы
- Алгоритмы и структуры данных
- Функции
- Коллекции в Python
- Чтение файлов в Python и командной строке
- Библиотека Pandas
- Получение данных с помощью API
- Базы данных
- Язык запросов SQL
- Power BI
- Data preparation
- Разведочный анализ данных: data cleaning
- Разведочный анализ данных: data visualization
- Разведочный анализ данных. Feature engineering
- Modeling
- Машинное обучение
- Линейные модели и нейронные сети
- Метрики в аналитике
- Маркетинговая аналитика
- Продуктовая аналитика
- Modeling. Заключение
- Evaluation
- Deployment
- Модель как API
- Мониторинг моделей
- Airflow
- Заключение
-
Основы математики для Data Science Получите базовые знания по математике для работы с машинным обучением.
- Аналитика и ML. Базовые математические объекты и SymPy. Дроби и преобразования
- Аналитика и ML. Базовые математические объекты и SymPy. Необходимые функции и некоторые дополнительные объекты
- Аналитика и ML. Функции одной переменной, их свойства и графики
- ML. Интерполяция и полиномы
- ML. Аппроксимация и преобразования функций
- ML. Аппроксимация и производные
- ML. Функции нескольких переменных, их свойства и графики
- ML. Частные производные функции нескольких переменных
- ML. Вектора и матрицы. Градиент
- ML. Линейная регрессия и системы линейных уравнений
- Задача аппроксимации как матричное уравнение
-
Основы статистики и теории вероятностей Поймёте принципы работы со случайными величинами и событиями.
- Введение в теорию вероятностей
- Случайные события
- Случайная величина
- Непрерывные распределения. Общие сведения
- Основные виды непрерывных распределений
- Статистические тесты
-
- Погружение в специализацию machine learning
-
Machine learning. Junior Познакомитесь с алгоритмами машинного обучения для решения задач регрессии, классификации и кластеризации.
- Постановка задачи машинного обучения
- Основные термины машинного обучения
- Выгрузка данных с помощью SQL
- Линейная регрессия
- Регуляризация линейной регрессии
- Метрическая классификация. Метод ближайших соседей и его развитие
- Библиотека numpy
- Линейная классификация. Логистическая регрессия
- Линейная классификация. Метод опорных векторов
- Логическая классификация. Деревья решений
- Деревья решений и случайный лес
- Очистка данных
- Кластеризация. Метод k-средних
- Интерпретация. Метод k-средних
- Кластеризация. DBSCAN
- Несбалансированные выборки
- Нейрон и нейронная сеть
- Основы анализа текстов
-
Итоговый проект Модель кредитного риск-менеджмента для банка.
- Проанализируете объёмный датасет и создадите модель кредитного риск-менеджмента
- Поможете банку спрогнозировать платёжеспособность клиента
-
Трудоустройство с помощью Центра карьеры
- Карьерный консультант поможет подготовиться к собеседованию в компании-партнёре. Разберёте частые вопросы и научитесь меньше переживать на интервью
- Напишете сопроводительное письмо и грамотно оформите резюме
- Будете готовы пройти собеседование — карьерный консультант организует встречу с работодателем
- На интервью презентуете проекты, над которыми вы работали на курсе, а знания и навыки пригодятся для выполнения тестовых задач
-
- Погружение в специализацию data analyst
-
Data analyst. Junior Познакомитесь с базовыми методами анализа на примере анализа данных продаж. Пройдёте основы маркетинговой, BI и продуктовой аналитики.
- Введение
- Доступные источники данных
- Аналитика на метриках
- Подходы к оценке качества данных
- Введение в формулирование гипотез
- Визуализация в Excel
- Проанализируете текущие продажи компании, выявите лидеров и аутсайдеров, визуализируете данные
- Объединение разнородных данных
- Требования к качеству данных
- Корреляция и факторы
- Визуализация в Python
- Формулирование гипотез по данным
- Выявите проблемные этапы воронки продаж, определите их причины, дадите рекомендации по изменению подходов к продажам
- SQL как инструмент формирования витрины данных
- Очистка данных
- Методы прогнозирования
- Программные средства визуализации
- А/В-тесты и их планирование
- Проанализируете изменения в мобильном приложении маркетплейса при помощи А/Б тестов по результатам внедрения ML-модели для оптимизации доставки
- Данные по API и аккумулирование источников
- Повышение качества данных
- Выявление закономерности в данных
- Интерпретация результатов А/В-тестирования
- Аналитическая отчётность и сторителлинг
- Выявите основные факторы убыточности и научитесь её прогнозировать, протестируете гипотезы о снижении убыточности
-
Итоговый проект Анализ эффективности маркетинговых кампаний.
- С помощью данных о покупках клиентов и их социально-демографических признаках проанализировать эффективность уже проведённых ранее маркетинговых кампаний и выявить факторы, способные повысить продажи.
-
Трудоустройство с помощью Центра карьеры
- Карьерный консультант поможет подготовиться к собеседованию в компании-партнёре. Разберёте частые вопросы и научитесь меньше переживать на интервью.
- Напишете сопроводительное письмо и грамотно оформите резюме.
- Будете готовы пройти собеседование — карьерный консультант организует встречу с работодателем.
- На интервью презентуете проекты, над которыми вы работали на курсе, а знания и навыки пригодятся для выполнения тестовых задач.
-
- Экспертный уровень: machine learning
-
Machine learning. Advanced Освоите алгоритмы для построения рекомендательных систем и прогнозирования временных рядов.
- Введение
- Auto ML. Часть 1
- Auto ML. Часть 2
- Введение в computer vision
- Нейронные сети и computer vision
- Нейронные сети и NLP. Часть 1
- Нейронные сети и NLP. Часть 2
- Введение в рекомендательные системы
- Коллаборативная фильтрация
- Бизнес-оценка рекомендательных систем
- Продвинутые инструменты ML-инженера
- Временные ряды
- Прогнозирование временных рядов с помощью других методов
- Мониторинг качества. Бонус-модуль
-
Deep learning (углубление в области NLP и CV) Научитесь работать с нейросетями: подробно узнаете, как они устроены, как использовать предобученные модели, готовить и передавать данные в нейросеть, строить и тестировать архитектуры, настраивать параметры и обучать модели на GPU.
-
Итоговый проект Поработаете с алгоритмами компьютерного зрения (CV) и обработки естественного языка (NLP).
-
- Экспертный уровень: data analyst
-
Продуктовая аналитика Будете обрабатывать данные, исследовать взаимодействие пользователей с продуктом, интерпретировать собранную информацию. Полученные результаты помогут решить задачи бизнеса.
- Введение
- Метрики
- Исследования
- А/В-тестирование
- Юнит-экономика
- Отчётность
-
Маркетинговая аналитика Узнаете, как настраивать веб- и сквозную аналитику, создавать воронки продаж, анализировать поведение пользователей на сайте.
- Введение в метрики и каналы продвижения
- Введение в маркетинговую аналитику
- Введение в конкурентный анализ
- Исследование целевой аудитории
- Анализ данных в «Яндекс Метрике»
- Анализ данных в GA4. MyTracker
- MyTracker
- Основные источники данных о продажах и клиентах
- Сквозная аналитика
- Основные системы визуализации
- Запуск кампании, анализ результатов и формирование новых гипотез
-
BI-аналитика Освоите мощную платформу для анализа и визуализации данных, с помощью которой сможете преобразовывать цифры в понятные бизнесу отчёты.
- Обзор Power BI
- Power Query: вводная часть
- DAX: вводная часть
- Визуализация: вводная часть
- Визуализация: фильтры, гистограммы и графики
- Визуализация: карты, таблицы и матрицы
- Визуализация: как сделать отчёт интерактивным
- Визуализация: прочие визуальные элементы
-
- Дополнительные курсы
-
Основы статистики и теории вероятностей advanced Научитесь применять основные принципы статистики и теории вероятностей при работе с задачами data science. Поймёте, как устроены алгоритмы машинного обучения, как в них применяются математическая статистика и теория вероятностей.
- Gentle introduction. Теория вероятностей в Python
- Оценивание
- Проверка гипотез: теория
- Проверка гипотез: практика
- Совместные распределения
- Исследование зависимостей
- Временные ряды
- Дополнительные главы (частотный и байесовский подходы, энтропия и дивергенция, формула Байеса)
-
Карьера разработчика: трудоустройство и развитие Узнаете, как выбрать подходящую вакансию, подготовиться к собеседованию и вести переговоры с работодателем. Сможете быстрее получить должность, которая соответствует вашим ожиданиям и умениям.
- Подготовка к поиску работы
- Составление резюме
- Поиск работы
- Выполнение тестовых заданий
- Подготовка к собеседованию и его прохождение
- Принятие офера и выход на работу
- Профессиональное развитие и карьерный рост
- Типичные вопросы на собеседованиях
- Требования к программистам разных направлений
-
Помощь в трудоустройстве
85% пользователей находят работу в течение 3 месяцев после обучения.
По данным исследования Высшей школы экономики
- Поможем оформить резюме и портфолио
- Подготовим к собеседованиям
- Пригласим в закрытый канал с вакансиями
Кем вы станете после курса?
- Инженером машинного обучения
Будете разрабатывать и оптимизировать модели, которые позволяют компьютерам обучаться на данных и делать прогнозы.
- Аналитиком данных
Будете собирать, обрабатывать и анализировать данные, чтобы выявить тенденции и паттерны, которые помогут принимать обоснованные решения компаниям из разных сфер.
- Специалистом CV
Будете помогать бизнесу принимать верные решения на основе данных. Будете работать с алгоритмами, которые позволяют контролировать безопасность на производстве, усталость водителей и повреждения трубопроводов на нефтезаводах.
- BI-аналитиком
Будете анализировать, визуализировать данные и создавать интерактивные дашборды в BI-инструментах, таких как Microsoft Power BI, Tableau, QlikView, IBM Cognos, Google Data Studio.
- Продуктовым аналитиком
Будете анализировать метрики продукта и поведение пользователей, проводить A/B-тестирование и выявлять потребности в новых функциях в продукте.
- Маркетинговым аналитиком
Будете анализировать эффективность рекламных кампаний, сегментировать аудитории на основе данных и прогнозировать спрос на товары и услуги.
Как проходит обучение
- Сначала смотрите видеоуроки
Они доступны в любое время. К каждому уроку мы приложили полезные материалы.
- Потом выполняете задание или проекты
Каждое задание основано на реальных данных. Во время выполнения проектов вы закрепите все знания, которые вы получили в видеоуроках.
- Получаете обратную связь от кураторов
Они проверят ваши задания в течение 72 часов с момента отправки работы, укажут на ошибки или похвалят, что вы все сделали круто.
Общение, комьюнити и нетворкинг
Вы сможете общаться в Telegram-чате с другими пользователями и экспертами.
- Кишинев
- Ташкент
- Баку
- Ереван
- Астана
- Минск
- Москва
- Гюмри
- Ванадзор
- Абовян
- Вагаршапат
- Раздан
- Гавар
- Капан
- Алматы
- Шымкент
- Гомель
- Могилев
- Наманган
- Самарканд
- Тирасполь
- Бельцы